Fis, an accessorial factor for transcriptional activation of the mar (multiple antibiotic resistance) promoter of Escherichia coli in the presence of the activator MarA, SoxS, or Rob.

نویسندگان

  • R G Martin
  • J L Rosner
چکیده

Transcription of the multiple antibiotic resistance marRAB operon increases when one of the sequence-related activators, MarA, SoxS, or Rob, binds to the "marbox" centered at -61.5 relative to the transcriptional start site. Previous deletion analyses showed that an adjacent upstream "accessory region" was needed to augment the marbox-dependent activation. To analyze the roles of the marbox and accessory regions on mar transcription, thirteen promoters, each with a different 5-bp transversion of the -96 to -32 sequence, were synthesized, fused to lacZ, and assayed for beta-galactosidase production in single-copy lysogens with appropriate genotypes. The accessory region is shown here to be a binding site for Fis centered at -81 and to bind Fis, a small DNA-binding and -bending protein, with a Kd of approximately 5 nM. The binding of MarA to the marbox and that of Fis to its site were independent of each other. MarA, SoxS, and Rob each activated the mar promoter 1.5-to 2-fold when it had a wild-type marbox but Fis was absent. In the presence of MarA, SoxS, or Rob, Fis further enhanced the activity of the promoter twofold provided the promoter was also capable of binding Fis. However, in the absence of MarA, SoxS, or Rob or in the absence of a wild-type marbox, Fis nonspecifically lowered the activity of the mar promoter about 25% whether or not a wild-type Fis site was present. Thus, Fis acts as an accessory transcriptional activator at the mar promoter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein.

Multiple antibiotic resistance in Escherichia coli can be mediated by induction of the SoxS or MarA protein, triggered by oxygen radicals (in the soxRS regulon) or certain antibiotics (in the marRAB regulon), respectively. These small proteins (SoxS, 107 residues; MarA, 127 residues) are homologous to the C terminus of the XylS-AraC family of proteins and are more closely related to a approxima...

متن کامل

Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters.

Expression of the marA or soxS genes is induced by exposure of Escherichia coli to salicylate or superoxides, respectively. This, in turn, enhances the expression of a common set of promoters (the mar/soxRS regulons), resulting in both multiple antibiotic and superoxide resistance. Since MarA protein is highly homologous to SoxS, and since a MalE-SoxS fusion protein has recently been shown to a...

متن کامل

Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli.

Escherichia coli K-12 strains are normally tolerant to n-hexane and susceptible to cyclohexane. Constitutive expression of marA of the multiple antibiotic resistance (mar) locus or of the soxS or robA gene product produced tolerance to cyclohexane. Inactivation of the mar locus or the robA locus, but not the soxRS locus, increased organic solvent susceptibility in the wild type and Mar mutants ...

متن کامل

MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response.

Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Esc...

متن کامل

Model of Transcriptional Activation by MarA in Escherichia coli

The AraC family transcription factor MarA activates approximately 40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 23  شماره 

صفحات  -

تاریخ انتشار 1997